

COURSE SYLLABUS

Introduction to Engineering Sciences - Bridging Course, 15 credits

Introduction to Engineering Sciences - Bridging Course, 15 högskolepoäng

Course Code: HIER20 Education Cycle: Second-cycle level

Confirmed by: Utbildningsrådet May 14, 2020 Disciplinary Technology

Valid From: Aug 17, 2020 domain:

Version: 1 Subject group: TE9

Specialised in: A1N

Reg number: Department of Rehabilitation Specialised in: Main field of study: Product Development

Intended Learning Outcomes (ILO)

Upon completion of the course the student should have the ability to:

Knowledge and understanding

- describe design principles of mechanical design
- explain various machine elements
- describe the working principles of Computer Aided Design (CAD) systems and various digital formats
- recognise the importance of styling in industrial design
- show familiarity with the working principles of Finite Element Method (FEM) programs.

Skills and abilities

- create solid and surface models in CAD
- conduct basic finite element calculations
- · select and analyse machine elements such as screws and bearings
- assess the styling of individual products or product lines.

Judgement and approach

 appreciate the role of the results of finite element calculations for assistive technology design.

Contents

- introduction to mechanical design
- machine elements
- introduction to CAD
- CAD modeling using SolidWorks software
- principles of industrial design
- introduction to FEM including basic calculations

Type of instruction

The course is implemented through lectures, assignments and individual and group tutorials.

The teaching is conducted in English.

Prerequisites

The applicant must hold the minimum of a Bachelor's degree or equivalent (i.e. the equivalent of 180 ECTS credits at an accredited university) in Prosthetics and Orthotics. Proof of English proficiency is required.

Examination and grades

The course is graded A, B, C, D, E, FX or F.

Examination of the course will be based upon one individual written exam and individual assignments.

A senior lecturer serves as examiner for the course.

In individual written examination Fx will not be applied.

Registration of examination:

Name of the Test	Value	Grading
Individual written exam	7.5 credits	A/B/C/D/E/FX/F
Individual assignments	7.5 credits	U/G

Course literature

Ullman, D. (2017). *The mechanical design process*. Boston, MA: McGraw-Hill Education, Asia. ISBN 9780071267960